Effective OpenMP Implementations

Yuliana Zamora

Abstract High Level OpenMP

OpenMP is a programming model to increase on node parallelism in
applications. It often comes under attack for poor performance compared to
MPI everywhere. This is because OpenMP is conventionally used at the loop
level and thus suffers from high thread start up costs and thread
synchronizations. A higher-level implementation of OpenMP can reduce the
typical overhead by having the parallel region encompass the whole main loop
and partitioning the child loops statically. We apply this method within a variety
of software applications (SELF, HIGRAD, CLAMR) to investigate speed-ups due to
reductions in OpenMP overhead, thread starts, and thread waiting times by the
implementation of high-level OpenMP.

Memo: _subroutine
Thread 0 Do i = Ith, uth
Thread 0
w Doi=1lthutbl .| ...
Thread 1 z eiai
£ section
It : [}
Thread 2 Do i = Itb, utb [}
Thread2| | | \ M7 —1——1 E 8 eedeeeea
lutby -l
11 Thread 3 IDo i = Itb, uth 'g -
Thread 3 — oi=Mb uthl . e

___[oi=ltb, uth
[o i = Itb, uth

subroutine

Bo i=Itb, utb

Figure 4. Implementation of high-level
OpenMP using 4 threads going through
two subroutines. Figure shows threads are
‘alive’ through both parallel region and
serial regions of the code.

_Doi=lth, utb

Applications e

Figure 1.

The Spectral Element Libraries in Fortran (SELF) is an open-source library that houses
routines necessary to implement spectral element methods. The shallow-water solver
(Dipole example) is a demonstration of the SELF applied to 2-D hyperbolic
conservation law on an unstructured mesh.

Figure 2. An atmospheric hydrodynamics
model, HIGRAD, is coupled to a wildfire
behavior model, FIRETEC, to produce a
coupled atmosphere/wildfire behavior
model based on conservation of mass,
momentum, species, and energy.
HIGRAD/FIRETEC is a three-dimensional
transport model that uses a
compressible-gas formulation to
simulation the coupling between wild
land fire and motions of the local
atmosphere. Figure and summary taken
from reference [1].

Figure 3. CLAMR (Compute Language
Adaptive Mesh Refinement) is being
developed as a DOE mini-app. CLAMR is
being used to develop the computer
science infrastructure needed for cell-
based adaptive mesh refinement to
effectively run on an Exascale class
system. As a simple representative physics
model, the shallow water equations are
used. This kind of physics model can be
used to simulate tsunamis and many
other water flows.[3] Figure taken from
reference [2].

SELF- Dipole (OpenMP Comparison)

10

8 “©-OpenMP
. ‘= 'High-Level OpenMP
_z 6 “~"Ideal Speed-up
3
2 4
7

5 Parallel Efficiency Up To 88%

0

0 1 2 3 4 5 6 7 8 9
Threads

Figure 5. Plot of high-level OpenMP speed-up compared to ideal speed-up and
conventional OpenMP implementation.

HIGRAD (MPI Comparison)

10

3 “MPI Parallel Efficiency Up To 85%
E) T High-Level OpenMP
"né) 6 ““"Ideal Speed-up
i,

2 Results Analogous To MPI

0 i

0 1 9

2 3 4 5 6 7
Threads(OpenMP)/Process Count(MPI)

Figure 6. Plot of high-level OpenMP speed-up compared to MPI only. High-level OpenMP
speedup showing an 85% parallel efficiency.

CLAMR (MPI Comparison)

4 Parallel Efficiency Up To 89%

3

2 “©-MPI

15 ‘= 'High-Level OpenMP
1
5
0

“~"Ideal Speed-up Results Analogous To MPI

0 05 1 1.5 2 25 3 3 5 4 4.5
Threads(OpenMP)/Process Count(MPI)

Figure 7. Plot of high-level OpenMP speed-up compared to MPI only. High-level OpenMP
speedup showing an 89% parallel efficiency.

Figure 8. Intel’s Knights
landing architecture is a
many core processor. The
configuration we are using
has 64 cores with 4 threads
each. Figure taken from[4].

wrnzZrin aR00 w

»
°
o
5
.
<
"
x
~
~
«
«
s

KNL - Higrad (MPI Comparison)
Parallel Efficiency Up To 90% o

“"MPI

50 ““High-Level Openmp
Z 40 —~IDEAL

70

20 30 40 50
Thread(OpenMP)/Process Count(MPI)

Figure 9. Plot of Higrad on a Quad-Cache Mode configuration of a KNL node showing comparable
speed-up to MPI only. We have excellent parallel efficiency up to 16 rheads and working at further
optimization.

Conclusion & F e Work

High-level OpenMP is applied to three different software applications, with different
hardware. The speed-ups obtained by introducing high-level OpenMP compared to the
conventional approach in SELF is significant (up to 89% parallel efficiency). The
implementation of high-level OpenMP in HIGRAD and CLAMR demonstrates
comparable speed-ups to MPI (OpenMPI). The ability to use the same thread address
across child classes allows for these great speed-ups with minimal fundamental changes
in the original code. The current results on the KNL reveal that further testing and
configurations need to be implemented to see better speed-ups and equivalent results.

1] http:/ wwnw.Janl gov/orgs/ees/ees16/FIRETEC shtml ‘Special thanks to Joseph Schoonover, Jenniffer

2 Estrada, John Lavesque, Priscilla Kelly, Neelam Patel

{3IRebecca Tumbln, Peter A Hartse, Robert W. SIAM Journalof Scentifc Computing (Feb. 2015)|
i b nkelman G, Uberuaga BP, Jonsson H. . Chem. Phys. 113:9901-4 (2000)

LA-UR-16-25444

